## A Quantum Theory of Mind Appendix A:

by John E. Range

| 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |

This array represents the state of a classical particle that is located in the $\mathbf{2}^{\text {nd }}$ of $\mathbf{N}=\mathbf{5}$ possible locations.


Here in this empty 5 by 5 "square array," "matrix" or "operator" the shaded boxes represent what-are-called its "diagonal" elements.

| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

This array represents the state of a quantum particle located in the second of $\mathbf{N}=\mathbf{5}$ possible positions. More generally the particular diagonal element (or number) located in horizontal row $\boldsymbol{n}$ and vertical column $\boldsymbol{n}$ of the matrix $\mathbf{S}$ represents the relative probability that the quantum particle lies in possible location $\boldsymbol{n}$. Because all of the off diagonal entries of this matrix are zero, this array is also an example of a "diagonal matrix"

| 1 | 0 | 1 | 2 | -1 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | -1 | 3 | 1 | 0 |
| 0 | -2 | 0 | 1 | 1 |
| 4 | 0 | 1 | 2 | 0 |
| 1 | 0 | 0 | 1 | -3 |

Here is a sample matrix (call it matrix A), the boxes are for simplicity filled with small integers, but they could also be filled with complex numbers.

| 6 | -2 | 0 | 1 | -1 |
| :--- | :--- | :--- | :--- | :--- |
| -2 | 4 | -2 | 0 | 2 |
| 0 | -2 | 8 | -1 | 1 |
| 1 | 0 | -1 | 6 | 0 |
| -1 | 2 | 1 | 0 | 7 |

Here is a another matrix (call it matrix B).

| 5 | 0 | 5 | 10 | -5 |
| :--- | :--- | :--- | :--- | :--- |
| 10 | -5 | 15 | 5 | 0 |
| 0 | -10 | 0 | 5 | 5 |
| 20 | 0 | 5 | 10 | 0 |
| 5 | 0 | 0 | 5 | -15 |

Here is matrix A multiplied by the scalar number 5

| 7 | -2 | 1 | 3 | -2 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 3 | 1 | 1 | 2 |
| 0 | -4 | 8 | 0 | 2 |
| 5 | 0 | 0 | 8 | 0 |
| 0 | 2 | 1 | 1 | 4 |

Here is the matrix representing $\mathbf{A}+\mathbf{B}$ ( matrix $\mathbf{A}$ added to matrix $\mathbf{B}$ ). Note that $\mathbf{A}+\mathbf{B}=\mathbf{B}+\mathbf{A}$.

| 9 | -6 | 5 | 12 | -7 |
| :--- | :--- | :--- | :--- | :--- |
| 15 | -16 | 25 | 5 | -1 |
| 4 | -6 | 4 | 6 | 11 |
| 26 | -10 | 6 | 15 | -3 |
| 10 | -5 | 2 | 7 | -22 |

Here is the matrix representing $\mathbf{A B}$ ( the left multiplication of matrix $\mathbf{B}$ by matrix $\mathbf{A}$ ).

| 5 | 2 | 1 | 13 | -3 |
| :--- | :--- | :--- | :--- | :--- |
| 8 | 0 | 10 | 0 | -6 |
| 7 | -14 | -7 | 5 | 5 |
| 25 | 2 | 7 | 13 | -2 |
| 10 | -4 | 5 | 8 | -21 |

Here is the matrix representing $\mathbf{B A}$ ( the left multiplication of matrix $\mathbf{A}$ by matrix $\mathbf{B}$ ). Note that $\mathbf{A B}$ does not equal $\mathbf{B A}$.

A projection operator " $\mathbf{P}$ " is an operator (or matrix) that satisfies the relation $\mathbf{P P}=\mathbf{P}$.

| $1 / 2$ | $-1 / 2$ | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| $-1 / 2$ | $1 / 2$ | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

Here is one possible projection operator.

| 1 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

Here is matrix $\mathbf{P}$ (another projection operator).

| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 |

Here is matrix 1-P ( another projection operator).

Let the above mentioned matrix B represent the state vector $\mathbf{S}$.

| 6 | -2 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| -2 | 4 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 |

Here is the matrix representing PSP

| 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 8 | -1 | 1 |
| 0 | 0 | -1 | 6 | 0 |
| 0 | 0 | 1 | 0 | 7 |
|     |  |  |  |  |

